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Abstract

3D Gaussian Splatting techniques have recently emerged
as a promising approach to address the tasks of novel-view
synthesis and six degree-of-freedom (6-DOF) tracking of
dense scene elements in a dynamic scene, most notably the
method presented by Luiten et al. [5]. Though this method
produces state of the art results in both performance and
quality for these tasks, it exhibits a significant limitation in
that it cannot handle new objects entering into the scene
due to the fact that all of the scene’s gaussians are initial-
ized from the first frame. This project aims to address this
by introducing an additional step in the training pipeline
to identify new objects via identifying relative dips in the
reconstruction losses of segmentation masks, initialize new
gaussians for them via monocular depth estimation maps,
and optimize the scene reconstruction to effectively initial-
ize objects into the scene.

1. Related Work
The project builds from ’Tracking by Persistent Dynamic

View Synthesis’ [5] which proposes a dynamic scene novel-
view synthesis method by initializing a scene parametrized
by 200-300k dynamic 3D Gaussians which move and ro-
tate over time to optimize the reconstruction of input im-
ages via differentiable rendering. This method relies on 3D
Gaussian Splatting [3], a novel approach to volumetric ren-
dering which boasts a significant performance boost over
previous radiance field methods by leveraging scene spar-
sity and properties of Gaussians to analitically compute the
rendering of a ray instead of sampling along it.

Image segmentation is a task that involves dividing a
digital image into multiple segments to identify and cate-
gorize different objects and boundaries within an image to
facilitate tasks like object detection, recognition, and scene
understanding. For our project, we will use segmentation
masks generated by Segment Anything [4] to identify where
in the scene the PSNR reconstruction loss is particularly
bad.

Monocular depth estimation is the task of estimating the
depth map of a scene from a single image. We will use
the Depth Anything model [7] to retrieve depth maps for
the scene during object reinitialization, and leverage them
alongside the pre-existing scene gaussians to initialize new
gaussians that represent the new objects in the scene.

A tangential approach to improving static 3D Gaussian
Splatting is the work of Chung et al. [1] in using depth maps
to improve the quality of initialized gaussians. Indeed we
will use a similar insight in the construction of our method
to initialize the gaussians of new objects.

2. Motivation
The tasks of dynamic 3D world modelling and dense

tracking are easily justifiable in the context of robotics,
augmented/virtual reality, and autonomous driving by pro-
viding a reconstrusction on where everything in a scene is
and how it moves. Pertaining to generative AI, the method
would enable us to seamlessly generate high-fidelity assets
for virtual reality and video games from captured video.
The main limitation described in the original paper is that
all the scene gaussians are initialized from the first frame,
and as such the method cannot handle new objects entering
the scene. By addressing this, we can effectively extend the
method to broadly handle more complex scenes.

3. Methodology
The proposed method comprises of a new pipeline on top

of the existing dynamic 3D Gaussian Splatting method. It
is comprised by:

• Identifying New Objects: At each non-initial time
step in the training process, we use the Segment Any-
thing model to generate segmentation masks Mc as-
sociated with camera c for the ground truth input im-
ages, ignoring those that comprise a very small part of
the image. We then compute the PSNR loss between
the ground truth and rendered images restricted to each
mask. Provided we have high variance (hyperparame-
ter), we identify such masks that exhibit a PSNR loss
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Figure 1. Pipeline of method

between the input image restricted to the mask I|m
and the rendered image restricted to the same Ĩ|m more
than two standard deviations below the mean for object
reinitialization, calling such subset M∗

c . Concisely,

M∗
c = {m ∈ Mc|PSNR(I|m, Ĩ|m) < E− 2σ, σ2 > vmin}

(1)

Where vmin = 2 seems to be a good value experimen-
tally.

If all of these subsets turns out to be empty, then there
are no new objects identified in the scene and we can
proceed with the original method. Henceforth, we will
abuse notation and extend any operator f on a mask
m ∈ M to the set of masks M by defining f(M) =
∪m∈Mf(m).

• Initializing New Gaussians: For each camera c with
non-empty M∗

c , we retrieve an estimated depth map
D̃c from the Depth Anything model and a sparse dense
map Dc from reprojecting the scene gaussian means
to the camera. To make use of scale-invariant depth
estimation models, we additionally solve for a scale
factor sc such that

E[Dc\M∗
c(Dc)] = sc · E[D̃c\M∗

c(D̃c)] (2)

That is, we restrict the depth maps to the masks’ com-
plement where we expect both maps to match so that
we can then regularize the scale factor based on the av-
erage value of the maps in this region. Once we have

the scale-adjusted dense depth map, we can sample it
uniformly at M∗

c to our desired density and reproject
it to yield new means µ∗

c that can be used in tandem
with the color values of the input images to initialize
new gaussians for the scene. More explicitly,

µ∗
c = sc ∗ π−1

c

(
{mi}Nc

i=1 ∼ Uniform(D̃c|M∗
c)
)

(3)

where πc is the projection function for camera c and
Nc is the desired number of new gaussians to initial-
ize. Since the success of the gaussian splatting train-
ing heavily depends on how we initialize the gaussians,
this step is crucial. Experimentally we find setting Nc

as follows yields good results:

Nc = |µs| ·
|M∗

c |
|H ·W |

· 2

|C|
(4)

Where µs are the existing scene gaussian means,
(H,W ) is the resolution of the images, and |C| is the
number of cameras. That is, we roughly expect half
the cameras to see the new object, and we want the
amount of new gaussians to be proportional to both the
relative space that the object occupies in the scene and
the amount of gaussians already initialized.

• Optimizing New Gaussians: After initialization, we
opt to optimize these new gaussians by running the
usual 3D Gaussian Splatting training loop, but with the
non-newly initialized gaussians frozen for a predeter-
mined amount of iterations.

Since the PanopticSports dataset used in the original pa-
per does not exhibit any scene with new objects entering,
we will create an adversial synthetic dynamic scene us-
ing Kubric [2] by modifying the MoVI-A dataset worker
script to have multiple cameras in a dome, just like Panop-
ticSports.

4. Analysis
We use the generated scene to contrast the original

method described in [5] with the proposed addendum. As
one might expect, the original method does not handle the
objects entering the scene well. Unfortunately, it seems that
our proposed method falls short aswell, with the initialized
gaussians not being able to train to capture the new object
well in our synthetic scene, as seen in Fig. 2. This leaves us
with a few insights:

1. While we can leverage the rendered depth context
around the object to solve for scale in our monocu-
lar depth estimation, it is clearly not sufficient to get
around the fact that this depth must be very precise for
the gaussian splatting optimization to work well. In
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(a) Without reinitialization

(b) With reinitialization

Figure 2. Results

fact, we are using a very small model for depth esti-
mation that likely misses a lot of the details needed to
faithfully represent the object, causing the blur we see
in the results. Perhaps this method works better with
depth scanner data, or some stereo technique to extract
the depth.

2. Though densification culls unused gaussians, it gener-
ally tends to clone much more than it removes. On the
current implementation we are calling densify with all
gaussians after initialization. More work needs to get
done to restrict the densification process to only the
new gaussians.

3. The insight of using the rendered depth map after the
temporal distortion to solve for depth estimation scale
might still be a useful idea if we use higher quality seg-
mentation, or completely change our approach on how
we determine the initialization space and the context.

5. Limitations and Future Work
The keen-eyed reader might have already picked up that

the proposed method does not depend on the specific mod-
els we are using for segmentation and depth estimation. As
such, it is exciting to see how the improvements in tackling
these tasks will make a downstream impact on the perfor-
mance of the method provided. Indeed it would be interest-
ing to see how the method performs with well segmented
images and LiDAR depth maps.

Additionally, we have just tested the method on one syn-
thetic adversial scene, testing its robustness on real data and
more complex scenes is a natural next step to better gain
insights on how to improve this method.

The broad idea of identifying the space in the scene
where there are new objects and initializing gaussians in
them leveraging the context around it seems to have some
merit to it, but the details of how we achieve this could very
well be refined, or even replaced by more sophisticated in-
sights. Hopefully, this paper lays the groundwork to ask
the right questions to improve dynamic scene reconstruc-
tion and novel-view synthesis. For instance, could we find
a more clever way to sample from the depth maps to ini-
tialize new gaussians? Maybe we can go beyond just de-
termining the gaussian’s mean and color, and we can use
the geometric context to determine some of the rest of the
gaussian’s parameters at initialization, as the quality of the
gaussian splatting heavily depends on the quality of the ini-
tializations. Perhaps we can modify modern techniques in
SfM like Dust3r [6] to initialize the gaussians in a more in-
formed way.

Figuring out how to gracefully handle objects that take
more than one frame to fully enter the scene would also
be an interesting direction, as we currently reinitialize such
objects every timestep naively.

On a final note regarding future threads to pull when
thinking about this method, notice how we didn’t lever-
age the stereo framework that the multiple cameras provide.
This was done deliberately in hopes of keeping the method
relevant if future advances in gaussian splatting allow for
single/few image scene reconstruction. However, it might
be the case that we can more efficiently achieve each step
of the proposed method leveraging stereo techniques in ex-
tracting the new object’s geometric data.

6. Conclusion
In this work, we propose a method to extend the dynamic

3D Gaussian Splatting technique introduced by Luiten et
al. [5] to handle new objects entering the scene. The pro-
posed method identifies new objects by leveraging segmen-
tation masks and PSNR reconstruction losses, initializes
new gaussians for these objects using monocular depth es-
timation, and optimizes the scene reconstruction to effec-
tively integrate the new objects into the scene representa-
tion.

While the initial results on a synthetic adversarial scene
demonstrate the potential of this approach, they also high-
light the challenges and limitations that need to be ad-
dressed. The quality of the gaussian initialization heavily
depends on the accuracy of the depth estimation, and the
current implementation falls short in capturing the fine de-
tails necessary for optimal scene reconstruction.

Despite these limitations, the proposed method opens up
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new avenues for future research in dynamic scene recon-
struction and novel-view synthesis. Improvements in seg-
mentation and depth estimation techniques can directly ben-
efit the performance of this method. Additionally, exploring
more sophisticated ways to initialize gaussians by leverag-
ing the geometric context and investigating the use of stereo
techniques for extracting new object’s geometric data could
lead to further advancements.

In conclusion, this work presents a promising direction
for extending dynamic 3D Gaussian Splatting to handle new
objects entering the scene. While the initial results are
not yet optimal, the insights gained from this study lay the
groundwork for future research and improvements in this
field, bringing us closer to achieving high-quality, dynamic
scene reconstruction and novel-view synthesis in complex,
real-world scenarios.
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