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Abstract

Over the past year, the task of novel view synthesis has
seen massive improvements on the SOTA with the introduc-
tion of 3D Gaussian Splatting (3DGS) based techniques [4],
leveraging the Gaussian primitive’s algebraic properties to
sample rays analytically and optimize a scene in a fully dif-
ferentiable manner. Though 3DGS boasts rendering times
that are more than an order of magnitude faster than alter-
natives like NeRF variants [10] [1], techniques to train the
models have mostly relied on complicated heuristics that re-
quire many views with known poses and intrinsics, as well
as a sparse point cloud representation of the scene. These
priors have been traditionally very hard to obtain, and ne-
cessitate very accurate estimations to be able to work; how-
ever, recent work by Fan et al. [3] has shown that by lever-
aging the dense point cloud output and camera estimations
of Dust3r [8], splats can be trained seamlessly from sparse
views letting Dust3r handle the prior generation. Our con-
tribution is thus to extend these insights to the dynamic case
by reimplementing the core ideas of InstantSplat on top of
the pipeline proposed by Luiten et al. in their brilliant paper
”Dynamic 3D Gaussians: Tracking by Persistent Dynamic
View Synthesis” [7], being the first to create an end to end
pipeline that can recover dynamic 3d gaussian splat scenes
from a low number of videostreams without intrinsics or ex-
trinsics.

1. Related Work

Many approaches[6][9][2] have recently been proposed to
use 3D Gaussian Splatting and NeRF techniques to repre-
sent dynamic scenes for the purpose of Novel View Synthe-
sis (NVS). Most notably, the method proposed in ‘Dynamic
3D Gaussians’[7] notes the intuitive temporal relationships
in the scene representation of adjacent time steps to develop
a set of heuristic losses and parameter updates that enable
fast training of a splat for a time step based on the spatial
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Figure 1. End to end pipeline corresponding to the method pro-
posed: 1. Use Dust3r to generate dense Gaussian Splatting pri-
ors from unposed and sparse videos. 2. Implement the ideas of
InstantSplat to generate high-quality splats of the first time step.
3. Incorporate dynamic training to successfully yield a dynamic
scene representation.

attributes of the prior splats. In addition to the scene repre-
sentation yielded by the method, persistent 6-DOF tracking
naturally follows from the paths traced by the means of the
Gaussian primitives.

Though this inductive approach gives incredible results
that speak for themselves, it unfortunately suffers the same
drawback that most dynamic approaches have in tUS Reno
(NGVPNS50) - SSOhat it is necessary that the initial splat
is of high quality, thus requiring an expensive multi-view
stereo rig with the cameras calibrated to be able to work.

InstantSplat[3] has recently come out with very promis-
ing adjustments to the 3DGS training that allows for high
quality splats to be generated from sparse-view, unposed
camera images. The crux of the method proposed lies
in Dust3r[8], a novel, deep-learning based approach that
breaks from traditional SfM methods such as COLMAP to
yield a dense multi-view point cloud reconstruction, cou-
pled with estimated camera parameters. All of this from
as little as two images. Though maybe Dust3r is not the



panacea for stereo reconstruction, as the estimations have
some considerable noise, the model performs inference in-
credibly fast, and the dense reconstruction can then be lever-
aged to very quickly train a high quality splat, as the authors
of InstantSplat explain.

2. Motivation

The tasks of dynamic 3D world modelling and dense track-
ing are easily justifiable in the context of robotics, aug-
mented/virtual reality, and autonomous driving by provid-
ing a reconstruction on where everything in a scene is and
how it moves. Pertaining to generative Al, the method
would enable us to seamlessly generate high-fidelity as-
sets for virtual reality and video games from captured video
without the need of an expensive MVS setup. As far as we
are aware, we are the first to propose and end to end pipeline
from sparse and unposed video streams to dynamic scenes.

3. Methodology

All of the timings provided were tested on an Nvidia RTX
5880.

The keen-eyed reader might have already caught on that
to achieve the contribution that we propose, there need not
be a complicated solution. Indeed what we propose is to
generate a high quality splat using InstantSplat for the first
frame of each video stream, then use that as a prior for
the Dynamic 3D Gaussians method. Of course, since the
InstantSplat code was not made publicly available at the
time of making the project, we reimplemented InstantSplat
within the already available code for Dynamic 3D Gaus-
sians. We subsequently detail how we accomplished exactly
that

3.1. Prior Inference from Dust3r

Given a set of camera video streams ¢ = {¢;(¢t)|i € N}
where N is the total amount of feeds and ¢ the time step,
we use the Dust3r model ® to yield extrinsics F(0) =
{E©)(0)|e; € ¢}, intrinsics I(0) = {I(¢)(0)|¢; € ¢} and
a dense colored point cloud P(0). Concisely,

(I)(C) = (E(O)’I(O)’P) (1)

We follow InstantSplat’s suggestion to force the resulting
intrinsic focals to be consistent with each other.

3.2. Training the Initial Splat

We initialize a Gaussian Rasterizer R and an Adam opti-

mizer with the following parameter groups for the Gaus-

sians g:

* 3D means (z, y, z) yielded from P.

* RGB colors (r, g, b) also from P.

* Rotation quaternion (qwy, gz, qy:, gz ) for the Gaussians
(After first time step)

Figure 2. Dust3r inference on 5 views[5], 6 seconds to generate

Figure 3. NVS after initial time step inference (9 seconds)

* 3D size in standard deviations (sz, sy, $2)

* Opacity o as a float for each Gaussian

+ Camera poses ((qwe, qTc, qYe, q2c), T.) parametrized as
quaternions and position vector.

We follow roughly the same losses and learning rates
that were employed by ’Dynamic 3D Gaussians’ and In-
stantSplat. Like InstantSplat additionally, we opt to not sub-
sample the dense priors and to not use the densify heuristics.

3.3. Dynamic Steps

Once we have the initial Gaussian Splat, we let the exist-
ing Dynamic 3D Gaussian method take over. An important
note is that due to time constraints we have not implemented
way to generate binary segmentation masks for the ground
truth images. Though the method still works without them,
tracking is quite bad without them. We intend to generate
these masks via computing optical flow in the future.



4. Experimental Results

Due to the time and compute constraints, we did not run
full ablations with test views and a priori known poses or
intrinsics. Nevertheless, we believe that the results speak
for themselves and urge the reader to see some dynamic ex-
amples we’ve created in our project webpage. In any case,
we mantain that metrics such as PSNR, LPIPS, and SSIM
do not very accurately reflect the quality of a splat, even if
they are useful for training purpose, as shown above.

We do hope in the future to test the optimized poses and
see how much better they are than the initialized ones, espe-
cially on dynamic scenes where some cameras are moving.

We note that with the InstantSplat implementation, the
initial splat actually trains a little faster than the subsequent.
This means that perhaps an online algorithm with it might
speed up the creation of dynamic scenes purely for NVS
purposes, since we’d lose tracking on reinitialization. De-
spite this there is a lot of room to speed up the dynamic por-
tion of the code, especially considering that a Dust3r pass is
nearly instantaneous relative to the dynamic timesteps.

5. Discussion

Though our proposed method yields promising results,

there are some important caveats that we must address.

¢ Inherent limitations of Dust3r: Though Dust3r is the
key component to making this training extremely fast and
efficient, in it’s current form it has some very apparent
shortcomings. Most notable, it is incredibly memory inef-
ficient during inference and doesn’t scale when provided
with many images. It was also only trained on indoor
scenes and objects, meaning that challenging depictions
such as humans often come out somewhat bad. Images
with a high level of symmetry, such as the ones taken for
the original PanopticSports dataset that came with the Dy-
namic 3D Gaussian paper, fail to accurately align them-
selves, making it a significant failure mode.

* Reliance on heuristics: We acknowledge that the big
contribution that InstantSplat provided was getting rid of
the highly complex rules that COLMAP and the original
Gaussian optimization had in favor to the learned repre-
sentations that Dust3r provides. In contrast to this, we
have integrated dynamic training, but we have not ad-
dressed the heuristic overhead that allows the method to
work. The computation of the dynamic losses is currently
the main bottleneck in training time.

¢ No Pruning Strategy: With the removal of densification,
we are working start to end with only the Gaussians ini-
tialized by the first Dust3r pass. Because of this we end
up with a lot of floaters in the scene, and we inherit the
failure case from Dynamic 3D Gaussians where we can-
not handle new objects coming mid scene.

A natural next step would be to address the limitations

noted, particularly improving how we do our dynamics and
figuring out a way to prune useless Gaussians. We believe
this is on of the first steps towards a polished end to end
pipeline to yield high quality scene reconstructions without
the need of expensive equipment.

Though we believe the splats speak for themselves, a full
ablation of the proposed method is in place to quantify how
well it recovers camera parameters. Due to our limitations
with compute, we didn’t have the time or resources to run
our same scenes through the original SfM + 3DGS pipeline.

6. Conclusion

In this paper, we have demonstrated a novel approach to
dynamic 3D Gaussian splatting by integrating InstantSplat
with Dynamic 3D Gaussians. Our method allows for effi-
cient and accurate reconstruction of dynamic scenes from
sparse, unposed video streams without relying on pre-
calibrated camera setups. We have showcased the poten-
tial of this approach through initial experiments, indicating
promising results in both the quality of the reconstructed
scenes and the speed of the training process.

While our work marks a significant step forward in
simplifying and accelerating dynamic scene reconstruction,
several limitations remain. Dust3r, despite its advantages,
exhibits memory inefficiencies and struggles with certain
challenging scenes. Additionally, the reliance on heuristics
and the lack of a pruning strategy for Gaussians are areas
that require further improvement. Future work should focus
on addressing these limitations and conducting comprehen-
sive evaluations to better quantify the performance gains.

We believe our contributions provide a valuable founda-
tion for future research in dynamic 3D scene reconstruction,
and we encourage further exploration to refine and expand
upon the methods presented.

7. Individual Contributions

* Juan Atehortua: Reimplemented the ideas from In-
stantSplat on top of the existing Dynamic 3D Gaussians
code (Before InstantSplat’s code was made public). Ran
experiments on low fidelity data sources.

* Alice Yu: Implemented visualization tooling used to ex-
port our Gaussian splats and their training to video for-
mat. Created drafts of final presentation and paper.
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